地 址:甘肃省兰州市皋兰县石洞镇新兴路三川口工业园区
电话:0931-7752255
0931-7752266
传真:0931-4909322
邮箱:gsetgs@126.com
gsetgs@163.com
网址:www.gslzet.com
烟气脱硫技术的发展历史过程和现状
a) 20世纪70年代,以石灰石湿法为代表第一代烟气脱硫。
b) 20世纪80年代,以干法、半干法为代表的第二代烟气脱硫。主要有喷雾干燥法、炉内喷钙加炉后增湿活化(LIFAC)、烟气循环流化床(CFB)、循环半干法脱硫工艺(NID)等。这些脱硫技术基本上都采用钙基吸收剂,如石灰或消石灰等。随着对工艺的不断改良和发展,设备可靠性提高,系统可用率达到97%,脱硫率一般为70%~95%,适合燃用中低硫煤的中小型锅炉。
c) 20世纪90年代,以湿法、半干法和干法脱硫工艺同步发展的第三代烟气脱硫。
由于技术和经济上的原因,一些烟气脱硫工艺已被淘汰,而主流工艺,如石灰石-石膏湿法、烟气循环流化床、炉内喷钙加炉后增湿活化、喷雾干燥法、气体悬浮吸收脱硫工艺(GSA)以及改进后的NID却得到了进一步的发展,并趋于成熟。这些烟气脱硫工艺的优点是:脱硫率高(可达95%以上);系统可利用率高;工艺流程简化;系统电耗低;投资和运行费用低。
2.脱硫塔大型化的要点2.1尽量使用单塔脱硫'
随着机组容量的增大,脱硫塔的直径也随着增大。在能使用单塔的情况下,尽量不要使用双塔和多塔,因为单一吸收塔技术提高了系统的可靠性和脱硫率,而且初期投资费可降低30%~50%。脱硫副产品回收利用的研究开发,也拓宽了其商业应用的途径。
2.2脱硫塔大型化的主要问题
脱硫塔大型化最主要的问题是要保证塔内流场中温度的均匀性和调节的灵敏性。
a) 塔内流场中温度均匀性的要求
在塔的高度方向的各个断面上,各点的温度趋于一致,不能有高、低温差异太大的情况出现。因为高温处的SO2吸收反应效果较差,高温时吸收剂的活性较小,反应温度与烟气露点温度的差值较大(AST),反应率就低;而低温处,尤其出现低于露点温度,即AST<0时,容易出现局部的结露、粘连和筒壁腐蚀,这就是为什么有些脱硫工艺需要在反应塔内加装内衬的原因,其实,这种情况的危害性较大,反应塔可以通过内衬防腐,但烟气下游的设备和烟气管道却难以防腐,且花费较大。
b) 脱硫塔调节的灵敏性要求
随着负荷、工况的变化,各参数的负荷应变时间短,较少滞后,使脱硫效率随着工况的变化而变化,从而保证各种工况下脱硫率稳定。
2.3循环流化床烟气脱硫塔
为保证脱硫反应塔温度的均匀性和调节灵敏性,要求塔内有良好的传质特性。物料的传质往往比传热更重要,而且能更快达到更好的效果,单纯的传热速度较慢,而且热力场有热力梯度,很难使各点的温度在短时间内很均匀,利用循环流化床的原理而设计的脱硫塔,在这一方面比较能够达到这一要求,它使反应塔内的传热传质非常强烈。
循环流化床脱硫塔的特点 根据循环流化床原理而设计制造的脱硫反应塔,其烟气进入反应塔底部时,塔内文丘里的加速,将喷入塔内的吸收剂和循环回流的物料吹起,形成沸腾床体,气体和物料无论处于流化床的过渡段还是稳定段,都处于强烈的紊流状态,物料之间的碰撞、摩擦、反应、传热等物理化学过程非常强烈,任何工况变化所引起的波动都会在这个强烈的传热传质状态下迅速达到新的平衡。这样,布置在塔顶的温度测点产生假信号或几个测点的温度信号不一致而使控制系统无法及时进行各种物料的调节的可能性大为减少,同时也使脱硫设备出现低温、结露、腐蚀的概率大为减少。
.3.2回流式循环流化床烟气脱硫塔的特点
尤其是德国WULFF公司的回流式烟气循环流化床(RCFB),其独特的流场和塔顶结构设计,在RCFB吸收塔中,烟气和吸收剂颗粒的向上运动中会有一部分因回流(Reflux)而从塔顶向下返回塔中。这股向下的回流固体与烟气的方向相反,而且,它是一股很强的内部湍流,从而增强了烟气与吸收剂的接触时间。实际上可以认为这是一种与外部再循环相似的内部再循环。在内部再循环的作用下,RCFB工艺的脱硫效率得到了优化。也许很多脱硫工艺都很难避免腐蚀情况的出现,但这种概率和趋向则可以把握。
2.4脱硫塔内烟气湿度的控制
a 温度的控制,实质上是对烟气湿度的控制。脱硫工艺中,烟气的湿度对脱硫效率的影响很大。例如炉内喷钙尾部增湿工艺,其炉内喷钙脱硫效率为25%~35%,尾部增湿效率为40%~50%,总效率为75%左右,这说明了烟气湿度对脱硫效率的影响。在相对湿度为40%~50%时,消石灰活性增强,能够非常有效地吸收SO2,烟气的相对湿度是利用向炉内给烟气**的方法来提高。半干法烟气脱硫工艺中,水和石灰以浆液的状态注入烟气,浆液中固态物的质量分数为35%~50%,而干法脱硫工艺,如RCFB和NID,加入的水量相同,但水分布在粉料微粒的表面,用于蒸发的表面积很大。烟气湿度的提高,可以使烟气脱硫操作温度接近或高于露点温度10~20 ℃(实践中,这一温度范围为65~75 ℃),激活消石灰吸收SO2。SO2是烟气中反应较慢的成分,保持床温接近露点温度(即较高的相对湿度),可以保持微粒表面的湿膜有较长的停留时间,促进SO2和Ca2化学成分之间的反应,使吸收的程度和石灰的利用率达到最佳。SO3和卤化酸类(HCl、HF等)的酸性比SO2强,所以SO3,HCL,HF成分在装置中的去除率达99%,因其活性强,几乎能全部与SO2同时被吸收,适量的卤化酸类因钙的吸湿性、因雾滴在湿润环境中的干燥时间较长,有助脱除SO2,这也是采用接近露点温度的另一好处。
3.干法脱硫工艺的运行调节
干法脱硫工艺的系统控制和调节主要取以下3个信号,用以前馈或反馈到各个调节回路,相互配合,达到脱硫的最佳工况条件,保证脱硫的效果。
3.1控制好脱硫塔内的温度及高度重视塔内的加水方式
a) 监测脱硫塔内的温度,以此来调节**系统的开度和**量的大小,保持适当的AST值,使床温在各种负荷和工况条件下,烟气的酸露点温度始终保持在较高处,这样,吸收剂的活性最佳,能够较好地捕捉SO2,并发生化学反应,提高脱硫率。
在大型化商业运行的脱硫塔中,温度的控制是比较困难的,它是制约脱硫装置大型化发展的主要因素之一。当脱硫塔直径越来越大时,要各个大面积截面上的温度保持均匀性,需采取大量的有效措施,目前,干法、半干法脱硫装置还没有在较大容量机组上使用的业绩,与此有很大关系。较为成熟的脱硫技术,如旋转喷雾法,GSA法,其单塔容量一般都在100 MW机组以下,单塔直径4 500 mm以下,而NID法则做得更小一些。各国公司都在围绕干法、半干法脱硫装置大型化发展进行开发和研究,德国WULFF公司利用流化床和带内回流的循环流化床技术(RCFB),在解决传热传质这一问题上,取得了一定的成绩,效果明显。目前,RCFB单塔用于奥地利1台300 MW机组烟气脱硫并获得成功。
b) 给脱硫塔内加水的方式颇为讲究。在旋转喷雾,GSA半干法中,由于吸收剂以浆液形式喷入时带有水,运行时又需加调节,造成由温度信号而引起的水路调节变得复杂化,因为在喷浆工艺中,所加入的水与吸收剂的量有比例关系,使**调节受其它因素影响。NID法的水完全与吸收剂、再循环料一道加入反应塔(视垂直烟道为反应塔)。RCFB法吸收剂直接以干粉形态喷入,水路另外单独喷入,就**调温而言,RCFB法显然要更方便一些。
3.2监测SO2排放量
监测SO2排放量信号,用于调节脱硫剂的加入量。当SO2排放量较大时,就应加入更多的吸收剂去吸收更多的SO2;当SO2的排放量较小时,就应减少吸收剂的使用,使系统运行经济合理,降低成本。
3.3监测吸收塔的压降
监测吸收塔的压降,用于调节再循环量的大小,使脱硫渣的循环量和循环次数控制在设计范围之内,这样既可控制下游脱硫除尘器的入口灰尘的质量浓度和烟囱烟尘质量浓度的排放,又可提高吸收剂的利用率,降低碱酸比。
控制这三个监测量及其相关的信号去调节各运行回路,使脱硫系统的运行达到最优化,这是干法、半干法脱硫工艺控制系统的基本要求。就控制的灵敏性、可靠性而言,如果三个控制回路能完全独立,各行其是,互不影响则最理想,而RCFB技术的控制原理最能符合这一要求,由于其吸收剂、水和脱硫渣的再循环是独立加入到脱硫塔的,这样就避免了其它工艺三者的互相牵连,避免了增加脱硫剂时附加了水而使温度下降或加水降温时附加了脱硫剂,从而增加再循环量而增大碱酸比的情况。当然,以上三个参数总是相互影响、协同调节的,但三路系统的参数分别调节,会更方便灵活一些。
4.预除尘器设置的探讨
对于是否使用预除尘器,很多文献或资料并没有详细说明。据国外一些资料指出,一般干法或半干法都设有预除尘器,但国内很多电厂没有设预除尘器。不设预除尘器,笔者认为起码会影响以下2方面。
4.1不利于燃料灰和脱硫灰的再循环
根据计算,锅炉燃煤产生的燃料灰的量比较多,而用于脱硫产生的脱硫灰的量比较少,通常前者是后者的三倍左右。以200 MW机组为例,耗煤量约95 t/h,产生的燃料灰约22 t(灰分的质量分数以25%计),而脱硫灰量(硫的质量分数以0.85%计)约7 t;以300 MW机组为例,耗煤量约140 t/h,产生的燃料灰约32 t,而脱硫灰量约11 t。这就是说,如果没有预除尘器,当脱硫灰和燃料灰混在一起再循环时,将有75%的再循环物是燃料灰,而这些大量的燃烧灰对提高脱硫率和降低碱酸比值并没有帮助,还会减少吸收剂、脱硫灰与SO2的接触,消耗动力,增大反应塔容量;由于再循环量变大,还会提高烟气喷射的初始速度以达到同样的流化状态,这一初始速度的提高,还会带来以下2个问题:
a) 减小烟气在塔内的停留时间,使气体很快通过吸收塔,降低了塔内的反应率,将部分脱硫反应留在了下游设备中。
b) 一般燃料灰比脱硫灰要粗一些,燃料灰的平均粒径大致为15μm±5μm,脱硫灰的平均粒径大致为10μm±5μm;燃料灰的体积质量一般为700~1 000 kg/m3,而脱硫灰的体积质量一般为500~1 000 kg/m3,烟气流速的加大,将大量的细微粒带出了反应塔,不利于吸收剂的有效利用,影响了碱酸比。
4.2影响脱硫塔下游的脱硫除尘器
是否设置预除尘器,对脱硫塔下游的脱硫除尘器会产生较大的影响。如果没有预除尘,大量燃煤灰混在脱硫灰中一起循环,使得循环量变大,脱硫除尘器的入口质量浓度也随之增大,在除尘器排放指标一定的情况下,脱硫除尘器的入口质量浓度是有限度的,太高的入口粉尘质量浓度也会使除尘器的造价上升,这样势必减少循环次数,降低吸收剂利用率,使碱酸比值变大。如果有预除尘器,这一情况将得到改善。这就可以解释GSA,NID脱硫工艺,在没有预除尘器时,循环次数只有30~50次;而CFB,RCFB脱硫工艺,由于设置了预除尘器,循环次数就可以达到100~150次。
5.脱硫除尘器的设置
干法、半干法脱硫用的除尘器有别于火力发电厂的常规除尘器,大型火力发电厂一般1台炉配2台除尘器,而脱硫装置如果是配单塔脱硫,则通常只配一台除尘器。除了设备数量的不同使得脱硫除尘器变大外,其差别还主要在于除尘器入口质量浓度的不同。火力发电厂所配除尘器的入口质量浓度通常在35 g/m3左右(标准状态),若烟尘排放标准以200 mg/m3计(标准状态),则效率通常为99.4%左右,而脱硫除尘器的入口质量浓度由于脱硫渣的多次再循环而变得很大,通常达到0.6~1 kg/m3(标准状态)。要达到相同的排放质量浓度,除尘效率通常要求达到99.97%以上。如使用RCFB技术的广州恒运集团公司的以大代小1×210 MW机组的烟气脱硫系统,脱硫除尘器的入口质量浓度为800 g/m3(标准状态),除尘效率要求达99.975%;使用NID技术的浙江巨化股份有限公司的230 t/h烟气脱硫用除尘器的入口质量浓度为1 kg/m3(标准状态),除尘效率要求达99.98%。凡利用循环技术进行干法、半干法脱硫的工艺,其脱硫除尘器的入口质量浓度都很高。如GSA,NID等工艺,由于循环量较大,一般循环次数为30~40次时,脱硫除尘器的入口质量浓度便达到了1 kg/m3(标准状态)。如采用预除尘器,由于再循环量减少了大约70%,其循环次数在100~150次左右时,脱硫除尘器的入口质量浓度可达到600~800 g/m3(标准状态),如RCFB工艺。对于高粉尘质量浓度的除尘器,国外有用布袋式的,也有用静电式的。由于布袋除尘价格较高,检修强度较大,更换频率快,且系统压降较大,厂用电高,我国趋向于使用静电除尘器。静电除尘器处理高质量浓度粉尘在结构上有其特殊的地方,各种工艺所采取的办法也不尽相同,如GSA工艺,在烟气进静电除尘器之前,先通过旋风分离器进行机械预除尘;NID脱硫工艺,在静电除尘器上加一段机械预除尘和小灰斗;lurgi公司采用上进气方式,通过烟气回转折流预除尘;德国WULFF公司在进口及第一电场采取预除尘措施的同时,又在振打清灰,改善放电极线形式,加大放电强度,提高放电电流强度,防止二次飞扬等方面做工作,并取得了较好的效果,获得了很高的除尘效率。尽管脱硫除尘器的入口质量浓度很高,但由于脱硫灰分的组成主要是钙的化合物,不会有燃煤灰中的Al2O3和游离SiO2等难以捕捉的物质,且脱硫灰的粉尘较细、比电阻较小,含湿量相对高一些、温度较低等因素,还是对除尘有利。但是,脱硫除尘器是干法、半干法脱硫工艺一个非常主要的设备。因为不仅有部分脱硫反应在除尘器中完成,而且除尘器还与脱硫塔的再循环联系在一起。严格意义上讲,脱硫除尘器是干法、半干法脱硫工艺的一个组成部分,与脱硫塔密不可分,实际上,国外所讲的烟气脱硫技术工艺系统,就包括了脱硫除尘器。
6.结论
由于干法脱硫工艺在占地、造价、操作、调节、维护、副产品无二次污染等方面的优点,这种工艺越来越受到业主方的广泛青睐。现在各国都在积极研究干法脱硫技术,并使之逐步向设备大型化、系统简单化、控制自动化发展,所以国内干法、半干法应用的比例也在逐步提高。随着对干法脱硫工艺的深入认识、研究和改进以及对脱硫灰综合利用的开发,烟气脱硫技术将会有更加广阔的应用前景。